
Introduction Representation Allocation Leaks

Lecture 6
Introduction to pointers

Gilles Audemard

Ibn Sina School 2015

L06 - Pointers Ibn Sina School 2015 1 / 24

Introduction Representation Allocation Leaks

Introduction

L06 - Pointers Ibn Sina School 2015 2 / 24

Introduction Representation Allocation Leaks

Introduction

Algorithms consume two kinds of resources : Memory and time

Two different strategies of memory allocation can be done
I Static : Allocation is done when the program is launched
I Dynamic : Allocation is done during the execution, when needed

L06 - Pointers Ibn Sina School 2015 3 / 24

Introduction Representation Allocation Leaks

Static allocation

Memory allocation is done before the execution :
I The necessary memory size is known at the compilation stage
I It is booked in the binary built
I Memory can be reached at the execution

During the execution, no allocation is performed

More efficient (dynamic allocation is a costly operation)

L06 - Pointers Ibn Sina School 2015 4 / 24

Introduction Representation Allocation Leaks

Dynamic allocation

Mostly programs need variable memory resources

It is necessary to ask (at arbitrary point of the execution) to the system new
memory areas

It is necessary to free dynamic allocations when they become useless
I The programer has to do that ?
I The system has to do that (garbage collector) ?

L06 - Pointers Ibn Sina School 2015 5 / 24

Introduction Representation Allocation Leaks

Potential problems

Indexes out of bounds (in array)

References to a non allocated pointer

Memory leaks

C - C++

No check

No garbage collector

Programmer is considered
responsible

Java - Python. . .

Check

Garbage collector

Programmer is considered
irresponsible

L06 - Pointers Ibn Sina School 2015 6 / 24

Introduction Representation Allocation Leaks

Memory representation

L06 - Pointers Ibn Sina School 2015 7 / 24

Introduction Representation Allocation Leaks

Introduction

Each byte can be characterized by its address

A variable uses memory space to store its content

A variable has thus an address in memory

This address is called pointer to its content

L06 - Pointers Ibn Sina School 2015 8 / 24

Introduction Representation Allocation Leaks

Introduction

Each byte can be characterized by its address

A variable uses memory space to store its content

A variable has thus an address in memory

This address is called pointer to its content

50 51 52 53 54 55

......

L06 - Pointers Ibn Sina School 2015 8 / 24

Introduction Representation Allocation Leaks

Introduction

Each byte can be characterized by its address

A variable uses memory space to store its content

A variable has thus an address in memory

This address is called pointer to its content

50 51 52 53 54 55

......

x

int x;

L06 - Pointers Ibn Sina School 2015 8 / 24

Introduction Representation Allocation Leaks

Introduction

Each byte can be characterized by its address

A variable uses memory space to store its content

A variable has thus an address in memory

This address is called pointer to its content

50 51 52 53 54 55

......

x

18

int x;
x = 18;

L06 - Pointers Ibn Sina School 2015 8 / 24

Introduction Representation Allocation Leaks

Address of variable

50 51 52 53 54 55

......

x

18

int x;
x = 18;

How to know the address where x is stored ?

This is done with the symbol & : &x� �
#include<stdlib.h>
#include<stdio.h>

int main() {
int x = 18;
printf("%d\n",x);
printf("%p\n",&x);

}� �
examples/alloc1.c

L06 - Pointers Ibn Sina School 2015 9 / 24

Introduction Representation Allocation Leaks

Pointer variable

It is possible to create variables that have the type pointer

They are intended to store memory address

This is done with the symbol *

L06 - Pointers Ibn Sina School 2015 10 / 24

Introduction Representation Allocation Leaks

Pointer variable

It is possible to create variables that have the type pointer

They are intended to store memory address

This is done with the symbol *

50 51 52 53 54 55

x

18

px

123 124 125 126 127 128

int x=18;
int *px = NULL;

L06 - Pointers Ibn Sina School 2015 10 / 24

Introduction Representation Allocation Leaks

Pointer variable

It is possible to create variables that have the type pointer

They are intended to store memory address

This is done with the symbol *

50 51 52 53 54 55

x

18

px

123 124 125 126 127 128

52

int x=18;
int *px = NULL;
px = &x;

L06 - Pointers Ibn Sina School 2015 10 / 24

Introduction Representation Allocation Leaks

Pointer variable

It is possible to create variables that have the type pointer

They are intended to store memory address

This is done with the symbol *

......

px

123 124 125 126 127 128

52

50 51 52 53 54 55

x

30

int x=18;
int *px = NULL;
px = &x;

*px = 30;

L06 - Pointers Ibn Sina School 2015 10 / 24

Introduction Representation Allocation Leaks

The * operator

The * operator is used for declaration and use ! !

Two distinct usages that must not confuse you
You can use it at the left or right of an assignment
This operator returns the object or its value that starts at this memory address� �

#include<stdlib.h>
#include<stdio.h>

int main() {
int x = 18;
int *px = &x;
printf("%d\n",x);
printf("%d\n",*px);
printf("%p\n",&x);
printf("%p\n",px);

}� �
examples/alloc2.c

Always assign the NULL constant to pointers that are not initialized

L06 - Pointers Ibn Sina School 2015 11 / 24

Introduction Representation Allocation Leaks

Our first Seg fault !

� �
#include<stdlib.h>
#include<stdio.h>

int main() {
int *px = NULL;
printf("%p\n",px);
printf("%d\n",*px);

}� �
examples/alloc3.c

What’s happen ?

The program try to access in a forbidden area of the memory ! !

The program has only the right to access on a dedicated area

Each time, one try to access/write elsewhere a segmentation fault is done

L06 - Pointers Ibn Sina School 2015 12 / 24

Introduction Representation Allocation Leaks

Pointers and types� �
#include<stdlib.h>
#include<stdio.h>

int main() {
int x = 18;
int *px = &x;
printf("%d\n",x);
printf("%d\n",*px);
printf("%p\n",&x);
printf("%p\n",px);

}� �
examples/alloc2.c

Be careful : a pointer on a variable with type A must be of type *A !

Otherwise you obtain this warning
warning: initialization from incompatible pointer type

It is important to read warning (and of course error) during the compilation
phase

This warning is important, we will see why later in the week

L06 - Pointers Ibn Sina School 2015 13 / 24

Introduction Representation Allocation Leaks

Dynamic allocation

L06 - Pointers Ibn Sina School 2015 14 / 24

Introduction Representation Allocation Leaks

Introduction

Until now, all variables are statically allocated

Suppose we have a pointer px of type int that not point on a variable

Thus, we can not write *px = 3

px does not point on a declared variable

It is possible to allocate space for px

L06 - Pointers Ibn Sina School 2015 15 / 24

Introduction Representation Allocation Leaks

A first look of dynamic allocation

......

123 124 125 126 127 128

50 51 52 53 54 55

px

int *px;

L06 - Pointers Ibn Sina School 2015 16 / 24

Introduction Representation Allocation Leaks

A first look of dynamic allocation

......

123 124 125 126 127 128

50 51 52 53 54 55

px

int *px;
px = (int*)malloc(sizeof(int))

L06 - Pointers Ibn Sina School 2015 16 / 24

Introduction Representation Allocation Leaks

A first look of dynamic allocation

......

123 124 125 126 127 128

50 51 52 53 54 55

px

int *px;
px = (int*)malloc(sizeof(int))

L06 - Pointers Ibn Sina School 2015 16 / 24

Introduction Representation Allocation Leaks

Example

� �
#include<stdlib.h>
#include<stdio.h>

int main() {
int *p = NULL;
printf("address = %p\n",p); // 0x0 (NULL)
p = (int*) malloc(sizeof(int));
printf("address = %p\n",p); // an address

*p = 12; // We store 12 in the reserved area
}� �

examples/alloc4.c

L06 - Pointers Ibn Sina School 2015 17 / 24

Introduction Representation Allocation Leaks

Allocation functions

void *malloc(size_t size)

I Allocation of size bytes of memory
I Cast is necessary
I No init ! !

void *calloc(size_t nb,size_t size)

I Allocation of nb elements of size bytes
I Cast is necessary
I Initialisation

L06 - Pointers Ibn Sina School 2015 18 / 24

Introduction Representation Allocation Leaks

Memory organisation

Memory is organized in several parts
I .text contains instructions : read-only access

I .data stores global datas initialized

I .bss store global variables non initialized

I User stack frame contains the stack and the
heap : used for local and dynamic variables

L06 - Pointers Ibn Sina School 2015 19 / 24

Introduction Representation Allocation Leaks

Stack and heap

The stack
I Stored in the high part of the memory

I Increase with decreasing addresses

I LIFO (see course of L. Simon)

I Used for function calls : parameters, registers, local variables

The heap
I Increase with increasing variables
I Huge datas are stored inside
I Dynamic allocations also

L06 - Pointers Ibn Sina School 2015 20 / 24

Introduction Representation Allocation Leaks

Memory Leaks

L06 - Pointers Ibn Sina School 2015 21 / 24

Introduction Representation Allocation Leaks

The rule !

All dynamic allocations have to be free

It is essential

However, memory leaks can appear

void free(void *ptr)

L06 - Pointers Ibn Sina School 2015 22 / 24

Introduction Representation Allocation Leaks

Example

� �
#include <stdio.h>
#include <stdlib.h>

int main() {
int *p;
p = (int*) malloc(sizeof(int));

// perform whatever you want

free(p); // when p becomes useless

}� �
examples/alloc5.c

L06 - Pointers Ibn Sina School 2015 23 / 24

Introduction Representation Allocation Leaks

Example of memory leaks

� �
#include <stdio.h>
#include <stdlib.h>

int main() {
long *p;
long i;
for(i = 0; i <10000000000;i++) {
p = (long*) malloc(sizeof(long));
// perform whatever you want
// free(p);

}
}� �

examples/alloc6.c

Each step in the loop contains a memory leak

At the end, 8 × 109 bytes are lost !

L06 - Pointers Ibn Sina School 2015 24 / 24

	Introduction
	Representation
	Allocation
	Leaks

